SOLUTION CONFORMATION OF BIS (O-NITROPHENYL) DISULPHIDE

Giuseppe C. Pappalardo and Giuseppe Ronsisvalle*

Istituto di Chimica Generale, ^{*}Istituto di Chimica Farmaceutica, Università di Catania,

Viale A. Doria, 95125 Catania, Italy. (Received in UK 1 August 1971; accepted for publication 4 August 1971)

To date, no precise estimate of the degree of rotational freedom about the C-S bond in model diphenyl disulphide systems has been made by means of dielectric constant measurements since only <u>p</u> derivatives, the dipole moments of which are independent of such rotations, have been investigated^{1,2}. On the basis of NMR studies "slow" rotation has been postulated in hindered diaryl disulphides³.

Recently X-ray crystallographic results have become available^{4,5} and we have measured the dipole moment of bis(O-nitrophenyl)disulphide; $\mu = 5.32$ D in benzene at 25° ⁶. The structural data allow us to evaluate dipole moments by vector addition for the model shown in Figure 1 according to the relation:

 $\mu = (\mu_x^2 + \mu_y^2 + \mu_z^2)^{1/2} \text{ where the components along each axis are given by.}$ $\mu_x = \mu_2 \cos \phi' \sin \phi/2 - \mu_2 \cos \phi \sin \phi/2 - 2\mu_1 \cos \phi/2 \cos (\theta - 90^\circ)$ $\mu_y = \mu_2 \cos \phi' \cos \phi/2 - \mu_2 \cos \phi \cos \phi/2$ $\mu_z = \mu_2 \sin \phi \cos (\theta - 90^\circ) - \mu_2 \sin \phi' \cos (\theta - 90^\circ)$ with $\mu_1 = 3.98$ and $\cos \alpha$ and $\mu_2 = 1.29 \sin \alpha$ ($\alpha = 41.9^\circ$) We use the angles $\phi = 85^\circ$, $\theta = 104^\circ 4$ and the group moments Ar-NO₂ = 3.98 D⁷ and

We use the angles $\Phi = 85^{\circ}$, $\theta = 104^{\circ}$ and the group moments Ar-NO₂ = 3.98 D and Ar-S- = 1.29 D¹. We neglect the interaction moment, μ_{int} , since the calculated dipole moment for bis(<u>p</u>-nitrophenyl)disulphide, using the group moments above with $\Phi = 72^{\circ}$ and $\theta = 106^{\circ}$, is 4.23 D, in satisfactory agreement, when allowance is made for the solvent,⁹ with the measured value of 4.31 D⁸. In fact the interaction S--NO₂ is expected to be almost zero since on passing from <u>p</u>-nitrothiophenol to bis(<u>p</u>-nitrophenyl)sulphide μ_{int} drops from 0.52 to 0.12 D¹⁰, and the longer bridge in the disulphide obviously increases this effect making $\mu_{int} \stackrel{2}{\rightarrow} 0$.

The conformation is defined by the angles of twist ϕ and ϕ' , both of which are zero in the sterically favoured rigid skew conformation where each phenyl ring lies in the plane of the C-S-S bonds. Rotation is measured from this position in a clockwise sense.

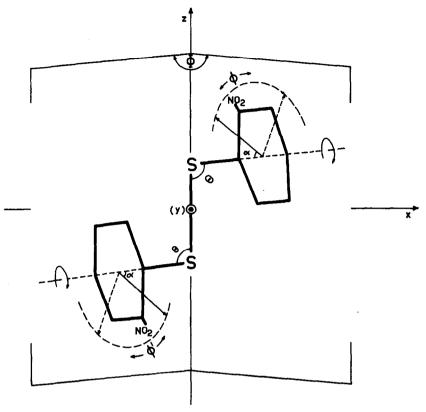
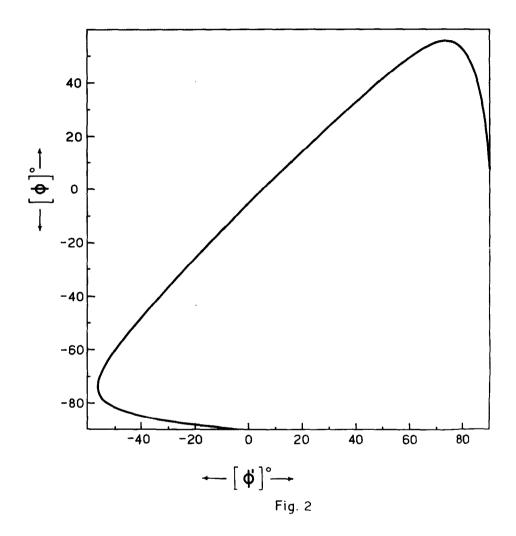



Fig. 1

Thus we consider an essentially rigid structure in which torsional oscillations of the phenyl groups about the C-S bonds are possible. Calculation of μ then shows that many conformations may be excluded because of the large difference between $\mu_{calc.}$ and $\mu_{exp.}$ The contour in figure 2 connects all points for which $\mu_{calc.} = \mu_{exp.}$ and the favoured conformations are those for which each ring is twisted by the same angle and in the same sense.

U. V. studies¹¹ have suggested that **electronic** as well as steric effects contribute to the potential energy barrier hindering free rotation.

REFERENCES

- 1.- M.J.Aroney, R.J.W.Le Févre, R.K.Pierens, Hera L.K.The, <u>Austral.J.Chem.</u>, 21, 281 (1968).
- 2.- M.J.Aroney, H.Chio, R.J.W.Le Févre, D.V.Radford, Austral.J.Chem., 23, 199 (1970).
- 3.- H.Kessler, W.Rundel, Chem.Ber., 101, 3350 (1968) and lit.cited.
- 4.- J.S.Ricci, I.Bernal, J.Chem.Soc. (B), 806 (1970).
- 5.- J.S.Ricci, I.Bernal, J.Amer.Chem.Soc., 91, 4078 (1969).
- 6.- For $100w_2 = 0,2001 \rightarrow 0,7965$: $\alpha = 10,48, \varepsilon_{10} = 2,2727; \beta = -0,449, v_{10} = 1,14251;$ $P_{2\alpha} = 671,66$ and $P_n = 1,05R_n$ ($R_n = 86,1$).
- 7.- C.P.Smyth, Dielectric Behaviour and Structure, Mc Graw-Hill, New York, 1955.
- 8.- E.N.Gur'yanova, Zhur.fiz.Khim., 24, 479 (1950).
- 9.- A.D.Buckingham, R.J.W.Le Févre, J.Chem.Soc., 1932 (1952).
- 10.- A.E.Lutskii, E.M.Obukhova, R.S.Cheshko, <u>Zhur.fiz.Khim.</u>, <u>42</u>, 1861 (1968) and lit.cited.
- 11.- G.Leandri, A.Tundo, Ann.Chim. (Italy), 45, 180 (1955).